首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   221篇
  免费   16篇
  2015年   3篇
  2014年   7篇
  2013年   9篇
  2012年   12篇
  2011年   9篇
  2010年   17篇
  2009年   7篇
  2008年   13篇
  2007年   7篇
  2006年   5篇
  2005年   4篇
  2004年   3篇
  2003年   3篇
  2002年   3篇
  2001年   4篇
  2000年   2篇
  1998年   3篇
  1997年   3篇
  1995年   5篇
  1993年   3篇
  1991年   2篇
  1988年   4篇
  1986年   2篇
  1985年   5篇
  1984年   4篇
  1983年   2篇
  1982年   3篇
  1981年   2篇
  1977年   2篇
  1974年   5篇
  1973年   9篇
  1972年   4篇
  1971年   6篇
  1970年   4篇
  1969年   2篇
  1959年   3篇
  1958年   3篇
  1957年   2篇
  1956年   4篇
  1954年   5篇
  1952年   2篇
  1951年   4篇
  1950年   6篇
  1949年   2篇
  1947年   1篇
  1946年   1篇
  1944年   1篇
  1937年   1篇
  1931年   1篇
  1927年   1篇
排序方式: 共有237条查询结果,搜索用时 484 毫秒
61.
62.
Variation in tolerance to nutrient limitations may contribute to the differential success of sugar maple ( Acer saccharum Marsh.) and red maple ( Acer rubrum L.) on acid soils. The objectives of this study were to examine these relationships as influenced by light environment and test whether sensitivity to nutrient stress is mediated by oxidative stress. First-year sugar maple and red seedlings were grown on forest soil cores contrasting in nutrient availability under high or low light intensity. Foliar nutrition, photosynthesis, growth and antioxidant enzyme activity were assessed. Photosynthesis and growth of sugar maple were significantly lower on nutrient-poor soils and were correlated with leaf nutrient status with Ca and P having the strongest influence. For red maple, only chlorophyll content showed sensitivity to the nutrient-poor soils. High light exacerbated the negative effects of nutrient imbalances on photosynthesis and growth in sugar maple. Antioxidant enzyme activity in sugar maple was highest in seedlings growing on nutrient-poor soils and was inversely correlated with photosynthesis, Ca, P, and Mg concentrations. These results suggest that: (1) sugar maple is more sensitive to nutrient stresses associated with low pH soils than red maple; (2) high light increases sugar maple sensitivity to nutrient stress; (3) the negative effects of nutrient imbalances on sugar maple may be mediated by oxidative stress.  相似文献   
63.
There are conflicting opinions on the relative importance of photosynthetic limitations under salinity. Quantitative limitation analysis of photosynthesis provides insight into the contributions of different photosynthetic limitations, but it has only been applied under saturating light conditions. Using experimental data and modelling approaches, we examined the influence of light intensity on photosynthetic limitations and quantified the osmotic and ionic effects of salinity on stomatal (LS), mesophyll (LM), biochemical (LB) and light (LL) limitations in cucumber (Cucumis sativus L.) under different light intensities. Non‐linear dependencies of LS, LM and LL to light intensity were found. Osmotic effects on LS and LM increased with the salt concentration in the nutrient solution (Ss) and the magnitude of LM depended on light intensity. LS increased with the Na+ concentration in the leaf water (Sl) and its magnitude depended on Ss. Biochemical capacity declined linearly with Sl but, surprisingly, the relationship between LB and Sl was influenced by Ss. Our results suggest that (1) improvement of stomatal regulation under ionic stress would be the most effective way to alleviate salinity stress in cucumber and (2) osmotic stress may alleviate the ionic effects on LB but aggravate the ionic effects on LS.  相似文献   
64.
65.
66.
67.
Therapeutic hoof blocks have been recommended for treatment of sole ulcers in dairy cattle; however, they are underutilized in the industry. Twenty Holstein cows were randomly assigned to receive a wooden hoof block applied to the left hind leg (n = 5), to the right hind leg (n = 5), or no hoof blocks (n = 10). Accelerometers were affixed to both hind legs of 10 blocked cows and 5 control cows. Cows were observed for locomotion scores, and milk production was recorded. Mixed models were constructed to determine effects of block application on behavior, milk production, and locomotion. Activity was altered by day, with cows being most active on Day ? 1. The mean number of daily lying bouts and lying bout duration did not differ by treatment. Locomotion scores were higher for blocked cows on Days 1, 2, and 3 compared with baseline; however, milk production did not differ between treatments. In conclusion, although block application affected the appearance of locomotion, it did not appear to adversely affect the behavior or milk production of sound dairy cows.  相似文献   
68.
Millman SE  Pagano M 《EMBO reports》2011,12(5):384-385
Evidence for the destruction of the anti-apoptotic protein MCL1 during prolonged mitotic arrest comes from three papers, one in The EMBO Journal and two in Nature, thus shedding light on the mechanism of apoptosis induction under these conditions.EMBO Rep (2011) advance online publication. doi:10.1038/nature09732EMBO Rep (2011) advance online publication. doi:10.1038/nature09779EMBO Rep (2011) advance online publication. doi:10.1038/emboj.2010.112During mitosis, eukaryotic cells have to properly align their chromosomes. Only after the kinetochore of each chromosome is attached to a polar microtubule can a cell satisfy the ‘spindle assembly checkpoint'', which prevents the mis-segregation of chromosomes. Failure to correctly segregate chromosomes before cell division might contribute to chromosome instability and tumorigenesis. To counteract chromosome aberrations, the cell initiates the apoptotic programme. It has become clear through the use of microtubule-poisoning, chemotherapeutic agents—such as paclitaxel and vincristine—that prolonged activation of the spindle checkpoint can induce mitotic arrest and, subsequently, programmed cell death. The molecular mechanisms responsible for initiating apoptosis during mitotic arrest have remained poorly defined. Two recent papers in Nature (Inuzuka et al, 2011; Wertz et al, 2011) and a report published by the Clarke group last year in The EMBO Journal (Harley et al, 2010) highlight the destruction of MCL1 during prolonged mitotic arrest and shed light on the mechanisms of apoptosis induction.Myeloid cell leukaemia 1 (MCL1) is an anti-apoptotic member of the B-cell lymphoma 2 (BCL2) family of proteins. MCL1, like BCL2 and BCLxL, prevents the downstream activation of BAX and BAK, which are responsible for mitochondrial outer-membrane permeabilization, initiation of the caspase cascade and induction of apoptosis (Youle & Strasser, 2008). Ubiquitination and proteolysis of MCL1 have been reported, but a mechanism for MCL1 degradation following spindle checkpoint activation remains unknown. Now, the studies referenced above suggest that degradation of MCL1 during prolonged mitotic arrest is essential for the induction of apoptosis. Given its prominent role in driving the cell cycle, as well as in safeguarding the fidelity of this process, it is not surprising that the ubiquitin-proteasome system (UPS) has a key role in dictating the activation of the intrinsic apoptotic pathway in cells arrested in mitosis. However, it is surprising that two E3 ubiquitin ligase complexes simultaneously facilitate this degradation event.Harley and colleagues describe the regulation of MCL1 by APC/CCdc20(anaphase-promoting complex/cyclosome and its activator Cdc20). This multi-subunit RING E3 ubiquitin ligase is active in mitosis, and ubiquitinates substrates such as securin and cyclin B, thereby allowing progression into anaphase. In their report, Harley and co-workers (2010) demonstrate a Cdk1/cyclin-B-mediated, site-specific phosphorylation (Thr 92 in humans) of MCL1 upon mitotic arrest, followed by its proteolytic destruction by APC/CCdc20. Thus, like the sand of an hourglass flipped at each entry into mitosis, the level of MCL1 steadily decreases. If time ‘runs out'' due to a prolonged mitotic arrest (that is, if MCL1 is completely destroyed), then apoptosis is initiated (Fig 1A). Both phosphorylation at Thr 92 and the presence of a conserved destruction or ‘D''-box motif (a characteristic of APC/C substrates) are required for MCL1 proteolysis, although the precise role of phosphorylation in promoting degradation remains unclear.Open in a separate windowFigure 1Two models for proteolytic destruction of MCL1 during mitotic arrest. (A) Schematic illustration of the effects of APC/CCdc20 and Cdk1/cyclin B on the degradation of MCL1 during prolonged arrest in mitosis. (B) Schematic illustration of the effects of SCFFbw7, JNK/p38/CKII and Cdk1/cyclin B on MCL1 degradation during mitotic arrest. PP2A is a protein phosphatase that is reported to associate with MCL1. Dashed lines represent inactive processes. Question marks denote unknown mechanisms. APC/CCdc20, anaphase-promoting complex/cyclosome and its activator Cdc20; SAC, spindle assembly checkpoint.Interestingly, the stability of MCL1 in asynchronous cells seems to be unaffected when the ability of APC/CCdc20 to target MCL1 is compromised by knockdown of Cdc20, or when phosphorylation at Thr 92 is ablated. Although the spindle assembly checkpoint is believed to inhibit APC/CCdc20 activity, the degradation of some targets, such as the CDK-inhibitor p21 and cyclin A, is not affected. Consequently, it is possible that MCL1 can be destroyed through Cdc20 during mitotic arrest.More recently, in two reports in Nature (Inuzuka et al, 2011; Wertz et al, 2011), it is shown that MCL1 interacts with another E3 ubiquitin ligase, SCFFbxw7. Similarly to the APC/C, the SCF (Skp1/Cul1/F-box protein) is a multi-subunit, RING E3 ubiquitin ligase. The F-box protein provides the specificity for target recognition, often by using specific interaction domains to bind to substrates. In the case of Fbxw7 (also known as Fbw7 and hCdc4), a series of WD40 domains form a pocket that dictates the binding of several substrates. For all known substrates, one or two phosphorylated degradation motifs (phospho-degrons) are recognized by Fbxw7 (Welcker & Clurman, 2008), and MCL1 seems to follow this trend. Briefly, two Fbxw7 degrons—Ser 121/Glu 125 and Ser 159/Thr 163—with different binding affinities were identified in MCL1. Inuzuka and colleagues report that these sites are phosphorylated in a GSK3-dependent manner, supporting a previous report that demonstrated a role for GSK3 in controlling MCL1 degradation (Maurer et al, 2006). They also demonstrate that Fbxw7 affects MCL1 stability during the DNA damage response. Wertz and co-workers provide evidence that, during mitotic arrest, the degrons in MCL1 are instead phosphorylated by JNK, p38 and CKII. Interestingly, when Wertz and colleagues investigated the degradation of MCL1 during mitotic arrest, they discovered a dependence on Fbxw7 similar to that reported for Cdc20 (Fig 1B). Furthermore, a functional Fbxw7–MCL1 interaction was required for the induction of apoptosis in ovarian cancer and T-ALL cell lines treated with microtubule-targeting chemotherapies. This observation presents a dilemma. Which ubiquitin ligase complex—APC/CCdc20 or SCFFbxw7—targets MCL1 for destruction during mitotic arrest? Do they compete or cooperate?There are several approaches that could be taken to investigate these questions. Perhaps the most promising direction is through understanding the role of various MCL1 phosphorylation events, particularly phosphorylation of Thr 92. The reports collectively demonstrate that Thr 92 and the Fbxw7 degrons are phosphorylated in mitotic cells. It is interesting that Thr 92 phosphorylation is specifically induced at mitosis, and Wertz and colleagues suggest that this event might drive the dissociation of a phosphatase to allow Fbxw7 degron phosphorylation (Fig 1B). However, the results so far are preliminary, and a more complete understanding of the mechanism by which Cdk1/cyclin B phosphorylation of MCL1 promotes proteolysis, and whether this is through Cdc20 and/or Fbxw7, is essential. Although MCL1 degradation after mitotic arrest is unlikely to be associated with the activity of GSK3, is there an induction of GSK3-dependent phosphorylation of MCL1 under other conditions? This important question has been studied previously, but it requires further investigation. Perhaps additional ‘priming'' kinases are involved, as is suspected to be the case for cyclin E and c-Myc, two other substrates of Fbxw7.The concept of a protein being targeted by two ubiquitin ligases is not new. For example, similarly to MCL1, p21 and MLL are targeted by both APC/CCdc20 and an SCF complex (SCFSkp2). Several APC/CCdh1 substrates (for example, Cdc25A and claspin) are also degraded via SCFβTrCP (Frescas & Pagano, 2008). However, in these instances, APC/C and SCF target the substrates at different phases of the cell cycle. The case of MCL1 is less clear. Wertz and colleagues show that mitotic arrest specifically induces binding of MCL1 to Fbxw7. Conversely, Inuzuka and colleagues provide data suggesting that Fbxw7 loss affects the non-mitotic stability of MCL1. Additionally, in an earlier paper, the Fbxw7 degron was reported to be phosphorylated by GSK3 during cytokine withdrawal (Maurer et al, 2006). Thus, we are left with a picture in which Fbxw7 targets MCL1 during mitotic arrest, but it might also target MCL1 at other points during the cell cycle or in response to external stimuli. With regard to Cdc20-mediated degradation of MCL1, mutation of the D-box seems to stabilize MCL1 only during mitotic arrest, although Cdc20 remains bound to MCL1 in non-mitotic cells. Thus, there might be differences in the conditions for recognition by either Fbxw7 or Cdc20 that merit further investigation. It is also worth mentioning that deubiquitinating enzymes (DUBs) might counteract the activity of Fbxw7, Cdc20, or both. In fact, the DUB USP9X was found to associate with MCL1 (Schwickart et al, 2010).Assuming that both E3 ligases target the same pool of MCL1 at the same time during mitotic arrest, why are there two modes of regulation? It could be that the ligases cooperate to lower MCL1 levels. It is possible that Fbxw7 and Cdc20 together deplete MCL1 to a point at which apoptosis can be initiated; if either ligase is compromised, apoptotic induction is inefficient. Alternatively, there might be a particularly relevant growth condition or cell-type specificity that favours the activity of one complex over the other. For example, it is possible that in tissues that give rise to human cancers harbouring Fbxw7 mutations (for example, T-ALLs or ovarian carcinomas), SCFFbxw7 acts as the predominant ligase. Finally, there could be redundancy or competition between the different E3 ligases. Perhaps untransformed cells maintain both systems, to protect against apoptosis evasion in the face of spindle dysfunction. Alternatively, one or both of these systems might be compromised in the cell-culture models. Notably, the situation is further complicated by reports indicating that other ligases seem to affect MCL1 stability: Mule/Huwe1 (Zhong et al, 2005) and SCFβTrCP (Ding et al, 2007). Silencing of Mule stabilizes MCL1, although Wertz and colleagues did not observe dramatic changes in MCL1 stability after Mule depletion during mitotic arrest. Instead, three groups did not observe stabilization of MCL1 after βTrCP silencing (Wertz et al, 2011; Inuzuka et al, 2011; Dehan et al, 2009). Moreover, the interaction between MCL1 and βTrCP seems to be mediated by BimEL (a βTrCP substrate), as indicated by increased binding under conditions when BimEL is degraded (rather than under conditions when MCL1 is degraded) and by the fact that some BimEL mutants lose their ability to bind to βTrCP, regardless of their binding to MCL1 (Dehan et al, 2009).Although the details of MCL1 regulation at mitotic arrest have only begun to unfold, it is clear that this pathway holds promise for furthering our understanding of the regulation of apoptosis. Microtubule-poisoning agents have historically been reliable chemotherapeutics, so, identifying cellular components that regulate MCL1 degradation during mitotic arrest is not only a way to stratify patients for a positive response to such drugs, but might also lead to the identification of novel targets for pharmacological intervention.  相似文献   
69.
Time-lapse imaging can be used to compare behavior of cultured primary preneoplastic mammary epithelial cells derived from different genetically engineered mouse models of breast cancer. For example, time between cell divisions (cell lifetimes), apoptotic cell numbers, evolution of morphological changes, and mechanism of colony formation can be quantified and compared in cells carrying specific genetic lesions. Primary mammary epithelial cell cultures are generated from mammary glands without palpable tumor. Glands are carefully resected with clear separation from adjacent muscle, lymph nodes are removed, and single-cell suspensions of enriched mammary epithelial cells are generated by mincing mammary tissue followed by enzymatic dissociation and filtration. Single-cell suspensions are plated and placed directly under a microscope within an incubator chamber for live-cell imaging. Sixteen 650 μm x 700 μm fields in a 4x4 configuration from each well of a 6-well plate are imaged every 15 min for 5 days. Time-lapse images are examined directly to measure cellular behaviors that can include mechanism and frequency of cell colony formation within the first 24 hr of plating the cells (aggregation versus cell proliferation), incidence of apoptosis, and phasing of morphological changes. Single-cell tracking is used to generate cell fate maps for measurement of individual cell lifetimes and investigation of cell division patterns. Quantitative data are statistically analyzed to assess for significant differences in behavior correlated with specific genetic lesions.  相似文献   
70.
We have identified numerous Ancestral Haplotypes encoding a 14-Mb region of Bota C19. Three are frequent in Simmental, Angus and Wagyu and have been conserved since common progenitor populations. Others are more relevant to the differences between these 3 breeds including fat content and distribution in muscle. SREBF1 and Growth Hormone, which have been implicated in the production of healthy beef, are included within these haplotypes. However, we conclude that alleles at these 2 loci are less important than other sequences within the haplotypes. Identification of breeds and hybrids is improved by using haplotypes rather than individual alleles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号